首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   16篇
  国内免费   4篇
测绘学   18篇
大气科学   38篇
地球物理   146篇
地质学   117篇
海洋学   34篇
天文学   76篇
综合类   1篇
自然地理   32篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   9篇
  2017年   12篇
  2016年   9篇
  2015年   5篇
  2014年   22篇
  2013年   22篇
  2012年   14篇
  2011年   26篇
  2010年   29篇
  2009年   37篇
  2008年   19篇
  2007年   23篇
  2006年   17篇
  2005年   25篇
  2004年   6篇
  2003年   14篇
  2002年   18篇
  2001年   8篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   7篇
  1996年   2篇
  1995年   7篇
  1994年   7篇
  1993年   12篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1982年   7篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1966年   1篇
排序方式: 共有462条查询结果,搜索用时 15 毫秒
1.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   
2.
Three different methods are presented to subtract thermal drifts and low-frequency noise from the signal of infrared array. The first is dead pixels with open Indium bumps, the second is reference output as implemented on the Hawaii2 multiplexer, and the third is dark pixels to emulate reference cells having a capacity connected to the gate of the unit cell field-effect transistor (FET). The third method is the most effective and yields a reduction in readout noise from15.4–9.4 erms. A novel method will be described to extend this readout technique to the Aladdin 1 K × 1 K InSb array. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
1Water LossInitiativesUnaccounted-for water(or unbilled water)has beenreceiving newscrutiny at both the state and nationallevels.For years,water conservationeffortsin Europehave emphasized reduction in water loss to a muchgreater extent thaninthe United S…  相似文献   
4.
5.
Summary In Canada, the average annual area of burned forest has increased from around 1 million ha in the 1970’s to over 2.5 million ha in the 1990’s. A previous study has identified the link between anomalous mid-tropospheric circulation at 500 hPa over northern North America and wildland fire severity activity in various large regions of Canada over the entire May to August fire season. In this study, a northern North American study region of the hemispheric gridded 5° latitude by 10° longitude 500 hPa dataset is identified and analysed from 1959 to 1996 for a sequence of six monthly periods through the fire season, beginning in April and ending in September. Synoptic types, or modes of upper air behavior, are determined objectively by the eigenvector method employing K-means cluster analysis. Monthly burned areas from the Canadian Large Fire Database (LFDB) for the same period, 1959 to 1996, are analysed in conjunction with the classified monthly 500 hPa synoptic types. Relationships between common monthly patterns of anomalous upper flow and spatial patterns of large fire occurrence are examined at the ecozone level. Average occurrence of a monthly synoptic type associated with very large area burned is approximately 18% of the years from 1959 to 1996. The largest areas burned during the main fire (May to August) season occur in the western Boreal and Taiga ecozones – the Taiga Plains, Taiga Shield, Boreal West Shield and Boreal Plains. Monthly burned areas are also analysed temporally in conjunction with a calculated monthly zonal index (Zim) for two separate areas defined to cover western and eastern Canada. In both western and eastern Canada, high area burned is associated with synoptic types with mid-tropospheric ridging in the proximity of the affected region and low Zim with weak westerlies and strong meridional flow over western Canada. Received April 3, 2001 Revised July 13, 2001  相似文献   
6.
One of the first operations in a seismic signal processing system applied to earthquake data is to distinguish between valid and invalid records. Since valid signals are characterized by a combination of their time and frequency properties, wavelets are natural candidates for describing seismic features in a compact way. This paper develops a seismic buffer pattern recognition technique, comprising wavelet-based feature extraction, feature selection based on the mutual information criterion, and neural classification based on feedforward networks. The ability of the wavelet transform to capture discriminating information from seismic data in a small number of features is compared with alternative feature reduction techniques, including statistical moments. Three different variations of the wavelet transform are used to extract features: the discrete wavelet transform, the single wavelet transform and the continuous wavelet transform. The mutual information criterion is employed to select a relatively small set of wavelets from the time–frequency grid. Firstly, it is determined whether wavelets can capture more informative data in an equal number of features compared with other features derived from raw data. Secondly, wavelet-based features are compared with features selected based on prior knowledge of class differences. Thirdly, a technique is developed to optimize wavelet features as part of the neural network training process, by using the wavelet neural network architecture. The automated classification techniques developed in this paper are shown to perform similarly to human operators trained for this function. Wavelet-based techniques are found to be useful, both for preprocessing of the raw data and for extracting features from the data. It is demonstrated that the definition of wavelet features can be optimized using the classification wavelet network architecture.  相似文献   
7.
The nature of the surface oxidation phase on pyrite, FeS2, reacted in aqueous electrolytes at pH = 2 to 10 and with air under ambient atmospheric conditions was studied using synchrotron-based oxygen K edge, sulfur LIII edge, and iron LII,III edge X-ray absorption spectroscopy. We demonstrate that O K edge X-ray absorption spectra provide a sensitive probe of sulfide surface oxidation that is complementary to X-ray photoelectron spectroscopy. Using total electron yield detection, the top 20 to 50 Å of the pyrite surface is characterized. In air, pyrite oxidizes to form predominantly ferric sulfate. In aqueous air-saturated solutions, the surface oxidation products of pyrite vary with pH, with a marked transition occurring around pH 4. Below pH = 4, a ferric (hydroxy)sulfate is the main oxidation product on the pyrite surface. At higher pH, we find iron(III) oxyhydroxide in addition to ferric (hydroxy)sulfate on the surface. Under the most alkaline conditions, the O K edge spectrum closely resembles that of goethite, FeOOH, and the surface is oxidized to the extent that no FeS2 can be detected in the X-ray absorption spectra. In a 1.667 × 10−3 mol/L Fe3+ solution with ferric iron present as FeCl3 in NaCl, the oxidation of pyrite is autocatalyzed, and formation of the surface iron(III) oxyhydroxide phase is promoted at low pH.  相似文献   
8.
A case study of a particularly intense cold air outbreak over the northAtlantic Ocean extending from the northeast coast of the UnitedStates to the Gulf Stream is described. A RADARSAT satellite synthetic apertureradar (SAR) image of this outbreak dramatically illustrates the spatialevolution of convection. Nearly coincident images from the National Oceanic and Atmospheric Administration's Advanced Very HighResolution Radiometer are used to compare many interesting features.In addition, National Weather Service rawinsonde data, National Data Buoy Center buoy data, and Woods Hole Oceanographic Institute Coastal Mixing and Optics mooring data arepresented. We use these data to help describe the spatial evolution of the atmospheric boundary-layer processes involved in this outbreak.Rows of cellular convective clouds begin to appear some distance offshore and then slowly increase in horizontal diameter and wavelength in the downwind direction, with a subsequent jump in cloud diameter downwind of the Gulf Stream North Wall (GSNW). The SAR image shows a similar evolution of sea-surface footprints of these boundary-layer features. This change in boundary-layer structure is attributed to corresponding changes in static stability. About 300 km south of the GSNW in the SAR image, an even larger jump in cell diameter appears and the cells becomenon-uniform with bright crescents and filled semi-circles on thedownwind sides of the cells. These are believed to be surface effectsof gust fronts induced by the mesoscale cellular convection and enhanced by the overall northwesterly flow.  相似文献   
9.
Glass Mountain consists of a 1 km3, compositionally zoned rhyolite to dacite glass flow containing magmatic inclusions and xenoliths of underlying shallow crust. Mixing of magmas produced by fractional crystallization of andesite and crustal melting generated the rhyolite of Glass Mountain. Melting experiments were carried out on basaltic andesite and andesite magmatic inclusions at 100, 150 and 200 MPa, H2O-saturated with oxygen fugacity controlled at the nickel-nickel oxide buffer to provide evidence of the role of fractional crystallization in the origin of the rhyolite of Glass Mountain. Isotopic evidence indicates that the crustal component assimilated at Glass Mountain constitutes at least 55 to 60% of the mass of erupted rhyolite. A large volume of mafic andesite (2 to 2.5 km3) periodically replenished the magma reservoir(s) beneath Glass Mountain, underwent extensive fractional crystallization and provided the heat necessary to melt the crust. The crystalline residues of fractionation as well as residual liquids expelled from the cumulate residues are preserved as magmatic inclusions and indicate that this fractionation process occurred at two distinct depths. The presence and composition of amphibole in magmatic inclusions preserve evidence for crystallization of the andesite at pressures of at least 200 MPa (6 km depth) under near H2O-saturated conditions. Mineralogical evidence preserved in olivine-plagioclase and olivine-plagioclase-high-Ca clinopyroxene-bearing magmatic inclusions indicates that crystallization under near H2O-saturated conditions also occurred at pressures of 100 MPa (3 km depth) or less. Petrologic, isotopic and geochemical evidence indicate that the andesite underwent fractional crystallization to form the differentiated melts but had no chemical interaction with the melted crustal component. Heat released by the fractionation process was responsible for heating and melting the crust. Received: 26 March 1996 / Accepted: 14 November 1996  相似文献   
10.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号